Showing posts with label detector. Show all posts
Showing posts with label detector. Show all posts

Tuesday, December 17, 2013

Laser Level Detector

Rotating laser levels, which are very handy  for setting objects in a room or garden at the  same height, are available at prices of a few  dozen pounds. At relatively large distances  and for outdoor use, the light from the rotating laser beam is often not easy to see, and  the laser beam detector described here can  be useful in such situations. The detector  works well at distances up to 50 metres (150  feet) and consists entirely of standard components. The detector is housed in a plastic case  that can be fixed to an object (such as a post  or a beam). It has three LEDs and a beeper that  indicate whether the object should be raised  or lowered.
Laser Circuit 1
LEDs with a transparent package and integrated lens (round surface) are used as sensors. The top and bottom detection zones  each have five LEDs and two opamps (IC1a &  IC1b or IC1c & IC1d), which drive the ‘Move  Up’ and ‘Move Down’ indicator LEDs. The middle sensor LED drives the ‘OK’ indicator LED  via two opamps (IC2a & IC2b).  The rising edges of the opamp output signals  trigger three separate monostable multivibrators (type CD4047). If desired, the circuit  shown inside the dashed outline (one gate of a  CD4044 quad RS latch) can be used in place of  each of the monostable multivibrators. In this  case the output signal has the opposite polar-ity, so the BS170 N-channel MOSFET must be  replaced by a P-channel type.
Laser Circuit 2

The monostable time of the middle retriggerable MMV should be longer than the rotation period of the laser (e.g. with a 2 rpm laser  it should be longer than 500 ms) so that the  beeper will emit a continuous tone. Most  rotating laser levels have variable speed, so  this can also be achieved by adjusting the peed if necessary. The monostable times of  the upper and lower MMVs are dimensioned  to generate clearly distinguishable short and  long beeps, respectively. The three MOSFETs  (T1, T2 and T3) are configured as a wired-OR  gate to drive the shared beeper. The fourth  MOSFET (T4) drives the ‘OK’ LED.
The circuit can be housed in an enclosure  together with three penlight cells.

Source: http://www.ecircuitslab.com/2012/05/laser-level-detector.html


Read More..

Monday, September 23, 2013

Infrared Proximity Detector Alarm

This circuit can be built from readily available low-cost components, some of which may even be hiding in your junk-box! The indicated value of 22 Ω for resistor R1 causes an average current of about 65mA through infrared emitter D1. Because the IRED is pulsed at a duty factor of about 50% through the action of T1 and IC1, a peak current of 128mA flows during every half cycle. This may seem a lot but in fact is well within the safe specification of the LD274. The LM567 PLL IC is configured to supply a switching frequency of about 20 kHz. When the infrared beam emitted by D1 is reflected by a nearby object, IC1, through receiver diode D2 and transistor T2, receives the recovered 20 kHz signal at its input, pin 3.

Infrared Proximity Detector Alarm Circuit DiagramBecause the ‘567 PLL is then locked, the IC output (pin 8), drops low, triggering the 555 chip in monostable mode (IC2) and so causing acoustic actuator Bz1 to sound. The monostable remains on as long as the reflected signal is being received. Because of the presence of T3, capacitor C5 is allowed to charge only when no signal is being received. In that condition, the 555 is turned off automatically after a time determined by R9-C5. Using the component values shown, this will be about 5 seconds. Obviously D1 and D2 should be mounted such that the latter can only pick up reflected infrared light.

The choice of the two infrared components used in this circuit will be uncritical but they must be ‘band’ compatible, i.e., generate (D1) and respond to (D2) the same wavelength. The operating point of the receiver input circuit is rather dependent on ambient day-light levels and the value of R4 may need to be adjusted a little to ensure a voltage of between 1.5 V and 4 V on the collector of T1 when no signal is being received. Some dc buzzers cause a lot of back-emf so it may be necessary to insert a diode in series with the output of IC1. If necessary, this diode should preferably be a Schottky type because of the inherent low voltage drop of about 0.4 V as opposed to 0.65 V for a typical small-signal silicon diode.
Read More..

Wednesday, May 29, 2013

Rain Detector Circuit Diagram



This is a Rain detector alarm circuit.You can keep the sensing part out of the house.If water drops fell on the sensing part the alarm will start to ring.so this is very useful circuit for you.Here we have used common IC NE 555.Think and use this in different way..


Read More..